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ABSTRACT

Introduction
Since the dawn of human culture, people have engaged in discussions of real or imagined events, collectively interpreting
them in terms of narratives. Today, digital media and online communication networks have dramatically impacted the way
narratives are formed, taking shape through formats such as hashtags, tweets, and other digital expressions. Through narrative
communications, online networks influence individual beliefs1, 2 and group consensus-making3–5, with real-world impact on
political polarization6 and collective organizing in both online and offline settings2, 7–9. Empirically investigating networked
behavior is a challenging task because the narratives that arise in online contexts tend to be sprawling and unwieldy10, and
modern social media environments are not amenable to experimental control.

To better understand how online communication impacts narrative adoption and belief change, we report an experiment on
networked groups of individuals incentivized to align narrative-based interactions with network neighbors when generating
hashtags to characterize a disaster event. Hashtags are a distinctive marker of narrative interaction on social media. They
function as concise representations of complex narratives11–13, and connect spatially disorganized groups according to the
content of their shared narratives and goals, thus constituting a potent force for online activism9, 14, 15. Across an online network,
hashtags serve as topic labels for generated content, which assist online platforms with the algorithmic categorization, curation,
and dissemination of dynamic social media discourse16 (e.g., by mapping discrete units of online content shared over time to a
single event or discussion)9, 14. At an individual level, hashtags allow users to signal personal contributions to broader narratives
emerging from interactions in an online community. Previous research on hashtags has primarily focused on understanding
their linguistic and semantic content17 and modeling the dynamics of their adoption and online spread in real-world (i.e., scale
free) social media networks. For example, mathematical models suggest that dominant (i.e., widely shared) hashtags emerge as
a result of a preferential attachment mechanism that increases the popularity of early popular hashtags over time. While many
hashtags initially compete for popularity, only a small set of hashtags persist to allow for broader narrative collaboration across
the network18, 19. It remains unclear how an individual’s prior knowledge interacts with the structure of their online network
(e.g., network diameter or neighborhood size) to influence hashtag generation, and how exposure to hashtags generated by
others within their networked group shapes beliefs and the subsequent generation of related narratives.

We approach the study of narrative interaction by examining language generation and decision-making in online network
experiments. In the experiments, groups of participants are placed in an online social network and interact with each other
with the goal of receiving rewards for producing behaviors that align with network neighbors. This paradigm allows us to
manipulate the network structure and complexity of content in online communication, potentially providing insights into the
dynamics of both individual- and group-level phenomena. Researchers have previously used relatively simple materials to
investigate how varying social network structure (e.g., node connectivity) influences the adoption of coordinated behaviors. For
example, Centola and Baronchelli (2015) introduced the Name Game asking participants to coordinate with network neighbors
on a face-naming task4. If network neighbors provided the same name as a response for a presented image of a face, they
were awarded 50 cents; otherwise they lost 25 cents. The researchers found that group consensus can result from purely local



incentives to interacting network neighbors. Furthermore, network structure impacts the dynamics of consensus formation.
Specifically, interactions within homogeneously-mixed or fully-connected networks, where each participant can potentially
interact with any other member of the network, exhibited a rapid convergence to consensus (i.e., the full network aligning on a
single name). In contrast, interactions within spatially-embedded networks, where each participant is linked to only a handful
of close-by neighbors, did not show strong convergence (see Figure 7).

In the present study, we extend this experimental paradigm by using naturalistic narrative materials (a description of a
real-world disaster with inherent causal structure), coupled with a type of networked interaction behavior (generating hashtags)
that occurs in real-world online settings. Rather than simply documenting the impact of varying network structure on the
dynamics of consensus formation, we examine how the network communications impacts decision strategies adopted by
individuals over time, and in turn individual decisions shape the collective behavior of the group through online communications.
We hypothesize that network structures shape the information that individuals gather from their social context. Individuals, in
turn, make rational decisions by integrating this socially gathered information through online communications with their own
prior knowledge to generate personalized narratives. Group-level consensus emerges from these individual decisions, even as
individuals are just rewarded based on successful when local coordination with network neighbors. To test this hypothesis, we
collected a rich set of empirical data through an online experimental platform, spanning multiple network sizes, two distinct
network structures, and two types of interaction tasks. We compared human performance with an agent-based model—Context
Aware Agents (CAA), which integrates prior knowledge with social context to facilitate effective local coordination. Our goal
was to assess whether the model accurately captures the dynamics of human consensus formation across all experimental
conditions. In addition to using hashtags as a narrative format, we asked participants to generate other forms of narratives, such
as tweets, describing the same event before and after networked interactions. We then examined whether different network
structures influenced shifts in personalized narratives, particularly in terms of increased causal content, when reflecting on a
complex real-world disaster.

Results
Figure 1 provides an overview of the experiment. Participants read a narrative-based passage describing the Fukushima nuclear
disaster and its effects on local communities and the environment, and generated a personal narrative and hashtags describing
the event. Participants were assigned to either the experimental narrative interaction group, which generated hashtags during
networked interactions involving narratives, or the control group, which performed a face-naming task in the Name Game from
Centola and Baronchelli (2015) as their networked interaction activity. We also manipulated network structures, including
homogeneously-mixed or spatially-embedded networks. Participants were financially incentivized to coordinate responses with
network neighbors. Following online communication, participants wrote another personal narrative and hashtags about the
Fukushima disaster.

Coherence dynamics during networked narrative interaction
We analyzed 41,600 interactions collected from 1040 participants across 26 experimental runs. Here, we focus on how the form
of networked interaction (narrative interaction via hashtag-matching versus playing the Name Game as a control reference)
mediates the impact of neighborhood structure (homogeneous versus spatial) on the emergence of group-level behavioral
coherence. Because matching hashtags requires coordinating on specific causal and/or semantic content in the narrative, whereas
naming an image of a face does not, hashtag coordination can be considered as a more computationally complex interaction task.
By comparing hashtag-matching dynamics against face-naming as a control, we can assess how the increased computational
complexity of aligning behaviors based on an array of causal and semantic information (i.e., narrative information) impacts
group-level outcomes. In addition, we examined two types of network coherence: group-level coherence, the similarity of
responses across all participants in a group, and local coherence, the similarity of responses between interacting nodes (i.e.,
network neighbors along network edges). We present results from both coherence measures.

Interaction task shapes onset of behavioral coherence within networked groups
We examined two measures of group-level coherence: (1) the proportion of a group reporting a shared, or normative response,
and (2) the entropy of the full response distribution of a group20. When assessing how network structures impact behavioral
dynamics, researchers have generally predicted the proportion of a network producing a dominantly shared behavior at a
given time3–5. A shortcoming of this winner-take-all measure is that it does not capture the variability of other alternative
non-dominant responses. The full set of responses from a group compose a distribution of behaviors that can be heavy-tailed,
multi-modal, or highly skewed — key distributional features not captured by simply predicting the modal response. Hence, we
also analyzed the results based on the entropy of the response distribution of a group. The entropy metric provides a concise
measure of response variability across the entire group: lower entropy indicates more similar or coherent responses in the group,
while higher entropy suggests greater diversity or variation in responses20, 21.
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Figure 1. Experiment procedure and networked interaction tasks. The experimental design follows three blocks. We
highlight a single node (in yellow) to illustrate a single participant’s tasks through the procedure. In the pre-interaction block,
all participants read the Fukushima nuclear disaster narrative that encodes the graphical causal model illustrated. The causal
model was not presented to participants. Participants then wrote a tweet-like personal narrative about the disaster and generated
ten hashtags describing the event. Participants next entered a network interaction block where they communicated with network
neighbors. In the network interaction block, group communication varied as a function of network structure
(homogeneously-mixed vs spatially-embedded) and content of interaction (narrative interaction based on hashtag matching vs
control based on the Name Game from Centola and Baronchelli (2015)). Participants interacted with neighbors, randomly
chosen based on network structure, for 40 trials and received one point for each trial in which their response matched their
neighbor’s (the participant with the most points at the end of network interaction received a financial reward). In the
post-interaction block, participants wrote a personal narrative about the Fukushima nuclear disaster and ten more hashtags
describing the event.
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Figure 2. Onset of behavioral coherence during networked interaction. Panels display the proportion of each group
adopting a dominant response over course of interaction by group size (columns) and interaction media content (rows). Each
line represents a single experimental run from a group of participants, and each point represents the proportion of the group
reporting the most common response (which can change trial to trial for a given experimental run). The entropy results from
the experimental runs are in the supplemental materials SM 2.

.

We examine response convergence in networked interactions using two metrics: proportion of a group providing the
dominant,‘normative’ response and the entropy of each group’s response distribution. We fit a Beta-distributed GLM to predict
the proportion of a group producing a dominant response as a function of trial number, neighborhood structure, content of
network interaction, and their interactions, while controlling for network size. As shown in Figure 2, shared behaviors emerged
reliably over time in homogeneously-mixed face-naming networks (βTrial = 0.09, 95% CI [0.09,0.10]), doing so more slowly in
homogeneously-mixed hashtag-matching networks (βTrial:Hashtag =−0.04, 95% CI [−0.05,−0.03]), and substantially less so in
spatially-embedded face-naming networks (βTrial:Spatial =−0.07, 95% CI [−0.08,−0.07]). These findings are consistent with
previous research analyzing group communication over face naming4. In addition, we found a significant three-way interaction
effect between the network structure, the content of the interaction, and the number of trials, such that the rate at which shared
behaviors emerge across network structures is shaped by the complexity of interaction(βTrial:Spatial:Hashtag = 0.05, 95% CI
[0.04,0.06]). These findings are qualitatively consistent with simulation results that suggest that the cognitive complexity (e.g.,
increased partner response uncertainty) of the interaction task can impact the rate of consensus22, 23.

Next, we fit a Gaussian-distributed GLM to predict the change in the entropy of the full response distribution across
experimental runs. As shown in Supplemental Figure SM 2, a group’s response entropy steadily decreased as a function of
subsequent interactions in homogeneously-connected face-naming networks (βTrial =−0.06, 95% CI [−0.07,−0.06]), doing
so more slowly in spatially-embedded face-naming networks (βTrial:Spatial = 0.04, 95% CI [0.03,0.04]). Entropy also decreased
more slowly in groups matching hashtags (βTrial:Hashtag = 0.02, 95% CI [0.03,0.02]), suggesting that coherence emerges more
slowly in situations with increased cognitive complexity. Furthermore, the analysis revealed a significant three-way interaction
between network structure, interaction content, and trial number, such that the rate of entropy change across network structures
is larger in face-naming networks than hashtag-matching networks (βTrial:Spatial:Hashtag =−0.02, 95% CI [−0.03,−0.01]). This
finding suggests that increasing the cognitive complexity of interaction tasks can reduce the effect of a network’s structure on
group-level coherence dynamics, such as homogeneously-mixed networks reaching consensus.

The role of individual decision strategies in the formation of group consensus
We analyzed individual-level decision strategies in networked interactions as a function of network structure and interaction
content. We found that human participants explore longer by sampling new responses when performing high complexity
interaction task than low complexity interactions. For tasks with low complexity (e.g., face naming), individuals are more likely
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Figure 3. Dynamics of individual decision strategy during networked interaction. Each panel illustrates the temporal
dynamics of the proportion of each group adopting one of the four decision strategies (sampling new responses, repeating a
partner’s last response, repeating one’s own previous response, and resampling from earlier context) across 40 trials in different
network structures (Spatially-embedded, Homogeneously-mixed) and interaction contents (Hashtag-matching, Face-naming).
We code cases when both a partner and oneself produces the same response (i.e., a rewarded response) as repeat self. Each
panel displays the proportion of participants choosing a particular strategy as a function of trial number, differentiated by group
size (20, 50, 100). Displayed proportions are averaged across runs for a given size, structure, and content. As shown in the top
panels, hashtag-matching networks sample new responses (red lines) for much longer than face-naming groups (bottom panels).
In contrast, participants in face-naming group are more quick to adopt the self-consistent strategy (repeating oneself, depicted
by the purple lines).

to generate self-consistent responses that mirror social context. This divergence in individual-level strategies helps explain why
interaction content mediates the effect of network structure on group-level consensus.

On a given trial, participants weighed between several decision strategies to make a response by exploring new responses
from their prior knowledge and exploiting responses acquired from social context. We consider four types of decision strategies
that a participant could have adopted while interacting with network neighbors. They could explore the response space by
sampling a “new” response that neither a partner nor they themselves had produced on a previous trial. They could copy their
partner’s response from the last trial, or repeat their previous response (“repeat partner” and “repeat self,” respectively). In
cases where there is agreement on a previous trial (i.e., repeat partner and repeat self are the same response), we code this as
repeat self, as self-consistency is rewarded in these trials. They could also resample a response they remember from earlier
interactions (“earlier context”), which could have been generated or received in a previous networked interaction trial.

As shown in Figure 3, we observed that increasing the cognitive complexity of interaction (i.e., hashtag matching versus
face naming) encourages groups to explore new responses for longer. Regardless of network structure and size, the number of
participants who sampled new responses gradually decreased over time in hashtag-matching networks (top panels), The number
who sampled new responses decreased quickly in face-naming networks (bottom panels). In hashtag-matching networks, the
preference for sampling new responses from background knowledge for longer makes hashtag interaction a more cognitively
complex task because it is more difficult to predict which responses are most likely to produce a coordination reward22, 24.
It also slows the network’s ability to reach consensus. As a corollary, groups exploring new responses for longer reduces
the influence of network structure on group’s potential to adopt shared behaviors. Indeed, the effect of network structure on
group-level outcomes is more pronounced in low-complexity interactions of the face naming task, where mirroring social
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context more reliably produces matching behaviors with network neighbors.
But why do hashtag-matching networks explore new responses longer than face-naming networks? We hypothesize

that the cognitive complexity of the interaction task plays an important role here as well. First, as shown in Figure SM 4,
hashtags generated during network communication often align with one of the discrete events described by the narrative
(e.g., #Earthquake, #Tsunami, and #Setsuden, each resulting in coordination in about 1/3 of the trials they’re generated).
Second, hashtags that align with the same underlying narrative entity (e.g., a specific event or topic) can have different string
representations, a phenomenon Booten (2016) describes as individualistic hashtags in scale-free, real-world online networks17.
To test this hypothesis, for each response we measured the probability that a participant coordinated with their partner given they
generate that response across all experimental runs; we refer to this value as the coordination rate of the response. #Nuclear,
#RememberFukushima, and #NuclearDisaster are the three hashtags with the highest coordination rates across all experimental
runs, with probabilities that a participant coordinates when generating those hashtags ranging between between 33% and 40%.
Each of these hashtags encodes broad topic-level information about the disaster. However, doing so with different strings makes
coordination more difficult (i.e., a factor that increases the cognitive complexity of the hashtag-based interaction task) . When a
participant considers which hashtag to generate on a given trial, they not only need to first consider which causal/semantic
entity their partner may focus on but also predict which string representation they will choose for encoding that discrete entity.
This variation in content amplifies the cognitive demands of the interaction task by expanding the potential coordination space
beyond exact narrative entity alignment. Because the response a neighbor may generate on a given trial is less certain, mirroring
one’s social context (repeating their own or a previous partner’s response) becomes a lower utility strategy.

We also examined the coordination rates of the face responses. As shown in Figure SM 4, the coordination rates for
responses in the face-naming groups, with the most successful names—Emily (coordination .65), Maddie (.6), and Taylor
(.6)—resulting in coordination on over half the trials in which they are generated. This is much higher than the top hashtag
coordination rates, which top out at around .4. Indeed, ten names have higher average coordination rates than the top hashtag.
Participants are more willing to adopt names received in social context than hashtags, as there is less background knowledge
shaping which responses are viable. This is observed in Figure SM 1 by comparing the initial distributions for names and
hashtags in the first round of interactions. Hashtags have a more skewed, less uniform distribution than face names. Due
to interaction dynamics, face names become less uniform than hashtags as shared responses are reached in the face naming
condition. The lack of causal and semantic complexity in the face naming task, as compared to generating hashtags for the
disaster narrative, allows social context to play a more important role in sampling face responses on a given trial, letting social
context seep in to guide predicted coordination utilities. Other participants’ responses encountered in social context are more
readily incorporated into participant’s sampling strategies. This is in contrast to the hashtag interaction conditions where
responses can also align on an array of causal/semantic relations, making different responses less interchangeable. For example,
Mary and Emily are effectively neutral and interchangeable responses given the lack of causal content communicated by the
face stimuli, whereas #NaturalDisaster and #Tsunami are less interchangeable as they isolate different causal relations in the
narrative materials. Therefore, as observed by the higher coordination rates among face names than hashtag responses, face
naming groups quickly reach consensus because responses encountered in social context can be more easily adopted and result
in coordination rewards than hashtag responses.

Shifts in narrative causal framing following networked interactions
Our current findings show that rewards for coordinating hashtags about narrative content in networked interactions can facilitate
shared behaviors (e.g., dominant hashtag responses), but do networked interactions impact the narratives people generate as
well? Before and after network interaction, participants wrote tweet-like personal narratives about the Fukushima nuclear
disaster. We used natural language processing (NLP) methods to analyze the narratives generated by participants. Numerous
studies have shown that causal relations are central to narrative representation25–28. Hence, we focus on analyzing the causal
claims that participants made in their written narratives.

Priniski et al. (2023) developed a causal language identification model that identifies and extracts causal claims expressed in
text documents29. The model identifies spans of words that serve as input to explicitly stated causal relations. Both the cause and
effect events, and the underlying causal relation (i.e., a causal trigger) is explicitly stated for the algorithm as prior knowledge
to identify the causal claim. The extracted claims are then co-referenced based on embeddings of the identified entities as
computed by a fine-tuned RoBERTa-XL transformer model30, 31, to produce clusters of semantically similar topics, termed
“causal topics”. The model additionally encodes the direction of the stated causal relationships linking any two topics. To extract
causal relationships expressed in the personal narratives, we used the causal language model to analyze all personal narratives
generated by participants before and after networked interaction. The model identified documents expressing explicit causal
claims (i.e., a cause-effect relationship), and clustered the claims based on their semantic content. As shown in Supplemental
Table SM 1 and Figure SM 5, the model identified 20 distinct causal topics, with topics relating to the events described in the
narrative (e.g., Earthquake, Tsunami, Nuclear Disaster), in addition to broad semantic-level topics not explicitly expressed in
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Figure 4. Shifts of causal claims in personal narratives following networked interaction. Left: the mean difference scores
in the number of causal claims per participant under each of the interaction conditions. Both content conditions engaged in the
same pre- and post-interaction phases (see Figure 1). Participants in homogeneously-mixed hashtag networks exhibit the
largest increase in the amount of causal language generated following networked interaction. Right: Of those who
demonstrated a change in the number of causal claims after networked interaction, we computed a one-sample t-test on the
difference scores (the number of causal claims following networked interaction − number of causal claims before interaction
for each participant) to measure significant shifts in expressed causal relations relations. The causal language model identified
twenty distinct topics, which mapped onto each of the discrete narrative entities shown in solid boxes in the causal diagrams, in
addition to broad semantic topics shown with dashed lines. Each drawn line shows a causal relationship expressed significantly
more following networked interaction. Participants in the both hashtag interaction condition shifted around the complete
generative causal chain in the narrative, while those in the face-naming condition did not. Furthermore, homogeneously-mixed
hashtag-matching networks showed significant shifts for more causal relations than the other groups, suggesting that
participants in these networks are exposed to a variety of causally-related hashtags that dramatically shift their personal
narratives. More details about the causal relations with significant shifts can be found in supplemental Table SM 2.

the narrative (i.e., a topic for Natural Disaster which refers to the earthquake/tsunami in the narrative). Each document with an
identified causal relation received a cause cluster label and an effect cluster label, with some clusters relating more to causes and
some more to effects. As shown in Supplemental Table SM 1, to reduce noise in the statistical analysis of causal language shift,
we remapped the unsupervised topic labels onto the Fukushima narrative’s casual model (see Figure 6), collapsing redundant
topics as necessary. Specifically, the causal language model identified twenty distinct topics, which mapped onto each of the
eight discrete narrative entities shown in the causal diagrams, in addition to broad semantic topics shown with dashed lines.

As shown in the left panel of Figure 4, we conducted an independent sample t-test on the difference scores (i.e., number of
causal claims generated after interaction − number of causal claims generated before interaction for each participant) across
both levels of structure and content. The homogeneously-connected structure with hashtag-matching was the only group that
indicated an average difference score statistically significant different from zero (t(261) = 4.01, p < .001). Neither hashtag
spatial (t(257) = 0.95, p =.345), nor the face-naming networks had a significant shift (homogeneous difference values, t(201)
= 1.16, p = .249); spatial: t(203) = 1.40, p = .164). Supplemental Figure SM 6 shows the distribution of difference scores
in each of the network structure and interaction content conditions. To ensure that this effect is robust we additionally fit a
Gaussian hurdle model to the distribution of difference scores as a function of network interaction as linear predictors (structure
and interaction content) (see Supplemental Information). We found converging evidence that the hashtag interaction yield
a significant effect on change in causal language in personal narratives, with the largest shift among homogeneously-mixed
networks.

We now narrow our analysis of causal language shifts based on the subset of participants for who we observed a change in
causal claims after networked interaction (i.e., among the approximately 50% of participants who had a shift in their personal
narratives). We analyzed which specific causal relationships increased (i.e., more participants mentioned that causal relation
after interaction) and decreased after networked interaction, to assess how interactions shifted how participants wrote about the
nuclear disaster narrative’s contents. We performed a one-sample t-test to assess which causal relationships expressed a positive
or negative shift for each of the network conditions by computing the subject-level difference scores (post-interaction count −
pre-interaction count) for each causal relationship and comparing the mean of that distribution to 0.0 (null hypothesis, no shift).
The differences that are significantly different from 0.0 resulted in a list of shifted causal relations in post-interaction personal
narratives, highlighting which causal relationships were more pronounced in participants’ written documents following network
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interaction. The right component of Figure 4 shows which causal relations had post-interaction shifts significantly greater than
zero. A complete list of significant shifts is provided in supplemental Table SM 2, and shift statistics for each of the 20x20
causal relations identified by the pipeline in this project’s repository on the Open Science Framework. As shown in the top
panels on the right part of Figure 4, for both of the hashtag-matching groups, causal language change centered around the three
causal events (Earthquake, Tsunami, and Nuclear Disaster) describing the generative causal chain in the narrative. Furthermore,
homogeneously-mixed hashtag-matching interactions resulted in more participants in the group eliciting the full causal chain
in the narrative (p < .001) in addition to an array of additional causal relations. The spatially-embedded hashtag-matching
networks only showed a shift towards the initial generative causal chain (p < .05). The results are different for the face-naming
groups, where the causal chain was not significant in either network structure condition. These results suggest that wider
exposure to the causal and semantic content of a full group of participants’ hashtags (i.e., as is the case for individuals in
homogeneously-mixed hashtag-matching groups) has a substantive impact on the causal content that they reference in their
written documents about the event. With this network interaction effect on causal language being less pronounced in more
insular, spatially-embedded hashtag-matching neighborhoods, and approximately no impact when groups coordinate about
causally-irrelevant materials to the narrative (i.e., when coordinating on naming a face rather than writing hashtags for the
narrative).

Simulating behavioral dynamics with networks of Context Aware Agents (CAA)
Game theory offers a natural framework for modeling decision-making in scenarios where the actions of others influence the
outcome for each participant32, 33. A well-known example is the replicator equation, frequently applied in evolutionary game
theory to model how the proportion of different strategies in a population shifts over time, driven by their comparative success34.
Strategies yielding higher-than-average payoffs tend to increase in a population, while less successful ones diminish, fostering
the rise of dominant strategies. However, these models assume predefined outcomes solely based on each player’s strategies,
which does not align with the dynamics of our experiment or real-world online networks. In this experiment, the choice to
adopt one strategy over another may or may not be a good choice depending on if responses happened to align with others in
the network. For this reason, it is difficult to determine a payoff matrix for the strategies of this experiment, requiring different
modeling frameworks (i.e., agent-based modeling). We should note that if we make the “name" or “hashtag" the strategies then
the payoff matrix would simply be the identity matrix, but we do not gain much understanding from such model.

Behavioral experiments have shown that decision-making heuristics are influenced by a combination of contextual factors
and prior knowledge35–37. Here, we propose and test an agent-based model, where individuals update their strategies by
integrating prior knowledge with new contextual insights during network interactions over the course of the experiment,
representations we term as ‘social context’. In our experiments, decision-making strategies consist of stating a new response
(i.e., sampling from background knowledge), repeating their previous partner’s response, repeating their own response from the
previous trial, or choosing a name from an earlier interaction (see Figure 3). In this model, background knowledge becomes
progressively less important as the number of trials increases. We refer to this model as the Context Aware Agents (CAA), as
it samples responses from specific content prior distributions (background knowledge about possible responses) and social
context (memory trace of interaction history) based on a learned decision strategy.

Crucially, agents update their sampling strategies adaptively from both background knowledge and interaction history
distributions, by following an updating procedure that weighs rewarded trials against non-rewarded trials when selecting a given
decision strategy. Given the reward incentive for coordinating with networked neighborhoods, we can assess how network
structure and content priors (context, hashtag versus face) impact the onset of group coherence. Our model possesses two
parameters: the learning parameter, α, which determines how fast individuals move from using background knowledge to
social context emerged from networked interaction, and the self-preference parameter, γ, which determines an individual’s
intrinsic preference for repeating themselves over their partner. See the computational model details section in the supplemental
materials for the mathematical details of the Context Aware Agent model for more information.

Network simulation results
Simulations were generated from models fit to data gathered from the behavioral experiments, with each node in a network
defined as a Context Aware Agent (see Figure 5) and interaction pairings progressing in the same manner as the experimental
runs. During each trial, agents followed the decision-making pipeline illustrated in Figure SM SM 7. We compared the CAA
performance with simulations from a computational model implemented by Centola and Baronchelli (2015), which served as a
control model. As shown in Figure 5, the control model randomly assigns one individual from each pair to be the speaker and
the other to be the hearer. If the speaker’s response is already in the hearer’s vocabulary, each of their vocabularies is updated to
contain only that response, otherwise, the speaker’s response is added to the hearer’s vocabulary. The next response of each
individual is a selection from their own updated vocabulary.
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Figure 5. Overview of computational models and simulation results. Left figure describes the computational model from
Centola and Baronchelli (2015) and the Context Aware Agent (CAA) model. The colored squares indicate possible responses
in each player’s vocabulary for the interaction tasks (e.g., names in the face-naming task, and hashtags in the hashtag-matching
task). The illustrations show how players (P1 and P2) update their vocabulary through the interaction task. Right figure shows
the simulation results of normalized entropy across runs for each content and structure condition against humans from both
computational models.

To fit the experimental data using our CAA model, we assume that all agents utilize the same learning and self-preference
parameters throughout the experiment. We optimized the learning parameter by minimizing the ℓ2-distance on the entropy time
series between the simulated and experimental results. A key observation is that participants in the hashtag experiment learn
differently compared to those in the name-face experiment, yielding different learning parameter α, for these two conditions.
Figure SM 8 illustrates the normalized average distance between the CAA model and experimental data as α varies, with the
face experiment results represented in blue. We notice an initial decrease followed by an overall increase in distance between
the CAA model’s simulated results and the experimental data as α rises. Notably, there is a distinct minimum at α = 0.4, where
the second derivative is significantly greater than zero. In contrast, for the hashtag experiments, the normalized average distance
decreases with α , plateauing around α = 4. The minimum occurs at α = 4.9, but here, the second derivative is close to zero.

The previous discussion supports the need for fitting different model parameters based on the content of interaction (hashtag
vs face-naming). Figure 5 shows the entropy for all four experimental conditions. Within each panel, we present the average
entropy from the human data, the control model, and the CAA model in that experimental condition. We find that the control
model consistently overestimates the decrease rate in the entropy dynamics and the initial entropy. In contrast, the CAA
model provides a better fit in all four experimental cases. Notably, the Context Aware Agent model matches the initial entropy
observed in the experiments and performs exceptionally well for both experiments on the spatially embedded network, as
shown by the red curves in the left panels. Figure 5 highlights the distance between the average experimental and model entropy
values. The CAA model appears to account for human response entropy better than does the control model.

Discussion
Understanding the drivers of narrative interaction in online networks is critical for predicting how information spreads through
social media and influences people’s beliefs at both group and individual levels. Through a novel experimental paradigm for
studying online narrative interaction and network-based computational modeling, we examined how a group’s network structure
interacts with individual-level decision strategies to shape the onset of shared beliefs about narrative-based evidence within a
networked group. We replicated long-standing empirical findings in the face-naming task presented by Centola and Baronchelli
(2015), demonstrating that information can move throughout a network in homogeneously-connected environments, facilitating
shared beliefs in a group. Due to the low environmental uncertainty and low complexity of the face-naming interaction task,
where less background knowledge can influence a partner’s response and different responses are more interchangeable with one
another (e.g., one name among many equally good ones), individuals are more likely to leverage social context to arrive at
shared beliefs. Moreover, with the increase of cognitive complexity in the interaction task, different characteristics of dynamics

9/24



emerge. We found that groups explored the space of possible responses longer in a cognitively complex social interaction
task (hashtag-matching), adding to the uncertainty in the social environment and limiting the onset of shared responses in
homogeneously-connected networks. Extending classic findings from the communication literature on manipulating the
cognitive complexity of face-to-face interaction to the online domain23. These findings suggest that while network-rewiring
may be one route to encourage consensus in real-world networks, because of the high complexity of social media, mechanisms
that encourage individuals to incorporate beliefs from network neighbors into future decisions (e.g., media engagement or
content generation) will likely also be necessary to encourage narrative consensus online.

By applying a causal language model to participants’ written documents, we found that network structure and narrative
interaction through hashtag generation can impact how groups discuss the information conveyed in event narratives. The groups
in the homogeneously-mixed hashtag-matching condition demonstrated a significant increase in mentioning a variety of causal
relations from the narratives after networked interactions, suggesting that exposure to a variety of extracted information (such
as hashtag) in a larger neighborhood has a potential to direct a group’s attention to the range of causal content embedded in
long-form narratives. Future NLP analyses of participants’ personal narratives should parse a wider array of semantic relations
to model shifts in situation models, the memory representations people build when processing text-based narratives25, 27, 28.
This effort could elucidate how networked interactions impact people’s narrative representations and illuminate mechanisms for
encouraging healthier discourse online.

By fitting our agent-based model of Context-Aware Agents to decision strategy dynamics in humans, we simulated network-
level dynamics for interaction tasks with both low and high levels of environmental uncertainty. However, it is important to
note that we assumed all participants learn at the same rate in the experiments, which does not consider individual differences
in learning. A future step in refining the data fitting is to tailor the data to individuals. This approach will not only improve the
model’s performance but also enable us to categorize participants into distinct clusters based on their decision strategies.

Materials and Methods
Preregistration
We preregistered the experimental design, key hypotheses, and statistical analysis framework on the Open Science Frame-
work at the following web address https://osf.io/598dt?mode=&revisionId=&view_only=. All code and
anonymized data for the presented results and software for replicating the experiments can be found at this Open Science
Framework repository https://osf.io/tx6gr/ and at the following GitHub repository https://github.com/
jpriniski/NetCom.

Participants
We sampled a total of N = 1,040 participants from the Prolific and SONA subject pools at UCLA, and placed them into one of
twenty-six experimental runs. Experimental runs vary according to three factors: the size of a network (N = 20,50,100), its
connectivity structure (homogeneously-mixed/fully-connected; spatially-embedded/ring-like), and the content of interaction
(hashtag; face-name). We collected a total of twelve experimental runs for face interaction (three runs for each network
structure of sizes N = 20 and N = 50), and collected fourteen experimental runs for hashtag interaction (three runs for each
network structure of sizes N = 20 and N = 50, and a single run of each network structure for N = 100). Participants N = 20 and
N = 50 conditions were sampled using Prolific. For the N = 100 condition, we recruited undergraduates in the Department of
Psychology at UCLA through SONA subject pools. We posted initial recruitment surveys a week prior to each run in SONA
and a few hours prior to each run in Prolific. Participants who received the most points at the end of the experiment received an
additional $10 bonus.

Materials
Across all network conditions, participants first read a four-paragraph narrative description of the Fukushima nuclear disaster
prior to interaction in a network. The narrative explains how a large earthquake triggered a tsunami that caused damage
to a nuclear reactor and resulted in radiation leaks, population displacement, and an energy-saving movement “Setsuden”.
We selected this narrative based on a pilot study demonstrating that it resulted in the most diverse set of hashtags within a
set of tested narratives related to natural and financial disasters. This is likely because the narrative describes a rich set of
causal relations (a generative causal chain producing a branching common cause sequence) and included both negative (e.g.,
displacement, poisoning) and positive effects (e.g., energy saving movement). Fig. 6 illustrates the causal structure of the
Fukushima disaster narrative.

Experimental Design
We used the open-source framework OTree written in Python38, and hosted experiments on a Linux server. Participants joined
the experiment through a Qualtrics survey that directed participants to the network experiment.
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Figure 6. Causal model communicated in the nuclear disaster narrative. This diagram is just for illustration purposes,
participants did not see this diagram. They read a four-paragraph narrative describing how the Tohoku earthquake triggered a
massive tidal wave that damaged the Fukushima Nuclear Power Plant, resulting in electricity outages, radiation leaks and
poisoning, human displacement, and Setsuden, a national energy-saving holiday. The narrative is available in the OSF project
website at https://osf.io/tx6gr/.

Figure 7. Two network structures tested in this experiment. Homogeneously-mixed (left) and spatially-embedded (right)
networks with N = 10 nodes. Edges drawn with a solid line represent the neighborhoods for a hypothetical node 1 (colored
yellow) in both networks. As a network’s size grows, the diameter of spatial networks grow whereas homogeneous networks
maintain a diameter of 1.

Our social network experiment proceeded in three steps. First, we randomly assigned each participant as a player in a
network that defined who may interact with whom on a given trial. Second, we assigned interactions between individual
participants on each trial. Third, we rewarded participants based on the outcome of their interactions. We can specify this
process using graph theory notation. The first step is to initialize a fixed graph G(N,E), defined by a set N nodes representing
individual participants connected through an edge set E. We discuss below the specific graph structures used. The second step
iterates over T trials. On a given trial t ∈ T , connection (edge) configurations follow mixing participants randomly within a
participant’s neighborhood. The third step is to identify and reward coordinated behavior. If the response from participant ni on
trial t is rt

i , then participants ni and n j coordinate if rt
i = rt

j.

Procedure
The experiment consisted of three blocks: a pre-interaction block, a networked interaction block, and a post-interaction block, as
shown in Figure 1. This three-block design allowed us to assess behavioral dynamics during the networked interaction block, in
addition to examining whether networked interaction could shift beliefs and language outputs from the pre- to post-interaction
blocks.

In the pre-interaction block, participants read a four-paragraph narrative describing the Fukushima nuclear disaster, and
then were asked to write a “tweet” (within a 140-character limit) and ten hashtags characterizing the events described in the
narrative.

In the network interaction block, participants joined a network experiment with real-time interaction via an online platform
using the python framework OTree38. Participants were assigned to one of six experimental conditions based on the size of the
network (N = 20; 50; 100) and network structure (spatially-embedded and homogeneously-mixed; see Fig. 7). Regardless of
network size, nodes in spatial networks have a consistent neighborhood size k = 4, meaning each participant would interact
with only four other participants during the entire experiment. Neighborhood size in homogeneous networks is N−1, as each
participant can interact with any of the remaining participants. A consequence is that the network diameter (i.e., the largest
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geodesic distance in the connected network) was consistently 1 in all tested homogeneous networks, but grows as a function of
size in spatial networks. Previous research showed that both features of network topology (i.e., neighborhood size and network
diameter) uniquely influence the emergence of shared behavior in online networks39.

The networked interaction block consisted of 40 trials, in which participants interacted with their partners based on the edge
structure in the assigned network. On each trial, participants were instructed to write a single hashtag describing the narrative
they read in the pre-interaction block. After participants submitted their hashtag response, they were then presented with a
new page showing their own hashtag response, their partner’s hashtag response, whether they received a point for matching
responses with their partner, and their cumulative reward point. Participants were informed of their partner’s response after
submitting theirs, and were provided no additional information (see sample screenshots of an interaction trial in Figure 1). This
design allowed us to measure the direct effect of coordination utilities and network structure on the production of normative
network behaviors in a social network.

Following networked interactions, participants entered a post-interaction block in which they wrote one more “tweet"
for the same narrative and another ten hashtags describing the Fukushima nuclear disaster before providing demographic
information.

One consequence of these two network structures is not only who is connected to who, but also the amount of repeated
interactions a participant has with their neighborhood. The number of times a participant interacts with their full set of neighbors
a total of T

N−1 times before completing the experiment. This means, in the fully-connected condition (i.e., homogeneouly-
mixed), participants interacted with their full set of neighborhood 2 times when N = 20, 81.6% of their neighbors when N = 50,
and 40.4% of their neighbors when N = 100. Meanwhile, participants interacted with their fully set of neighbors 10 times in the
spatially-embedded structures. These conditions allow us to contrast the effect of neighborhood size relative to ties across the
network, and to determine the impact of repeated interactions between pairs of partners to produce dominant behaviors (e.g.,
participants in the network responding in a consistent manner).
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Supplemental Information
Computing normative responses
In Figure 2 from the main text above, we display the onset of shared response in each experimental condition. Shared normative
responses, represent the agreement/consensus of a group. Following previous literature4, we encode a normative response by
dividing the number of respondents in a group who produced the most popular response on a given trial by the group size. The
response could change from trial to trial.

Analytic framework for statistical modeling of normative response
We fit Bayesian generalized linear models (GLM) to predict how the two network structures (spatially-embedded vs homogeneously-
mixed structure) and the content of interaction (hashtag response vs face-naming) support the emergence of group coherence.
We fit separate models to predict the proportion of a group producing a dominant response, and the entropy of the group’s full
response distribution. We assume that the proportion of participants who produced the dominant hashtag on trial t follows a
Beta distribution, a commonly used distribution to predict proportion data40; we used uninformative priors (i.e., N (0,10))
for regression coefficients. Specifically, the GLM model predicted the coherence value as a function of trial number (i.e.,
Trial) interacted with network structure (Spatial vs Homogeneous) and content (Hashtag vs Face-name), while controlling for
network size.

Prior distribution of responses illuminates background knowledge about interaction content
As shown in Figure SM 1, the prior for face names is more distributed than that for hashtags, which shows that responses
consolidated around broad topic labels (e.g., #NuclearDisaster) and causal/generative events (e.g., #Earthquake and #Tsunami)
on the first trial in networked interaction. The prior distribution of possible responses influences how participants choose to
explore background knowledge within a social context (i.e., responses sampled from prior interactions that yielded rewards)
when coordinating with network neighbors. The high uncertainty in the distribution of face names promotes more reliance on
learning from social context during networked interactions, which enables a quicker onset of group-level consensus.
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Figure SM 1. Distribution of the top 15 most common responses in the first trial of face naming and hashtag matching
experimental runs. In the first trial, face name responses exhibit a widely dispersed distribution, while hashtag responses show
a more skewed distribution with increased frequency of hashtags that describe broad topics (e.g., Nuclear Disaster) and causal
topics expressed in the disaster narrative. The increased skewness in hashtag interactions suggests that participants use
information about the event extracted from the narrative when starting interaction on this task. In addition to background
knowledge, there are multiple strings mapping onto the same narrative entities (e.g., the several hashtags related to the nuclear
disaster topic). These two factors make it more difficult for groups to align on shared responses.
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Entropy dynamics of response distribution
Entropy encodes the overall coherence of a response distribution. In Figure SM 2, we observe that the entropy approaches zero
more quickly under the face-naming condition. This suggests a faster shift toward coherence across responses compared to the
hashtag condition.
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Figure SM 2. Entropy change of response distribution over course of interaction by group size (columns) and interaction
content (rows). The entropy values represent the change in entropy in trial t from the first trial, allowing normalization between
group sizes (larger group sizes inherently have higher entropy due to larger distribution of responses).

Cognitive complexity shapes onset of local coordination between interacting nodes
The group-level coherence findings described above replicated well-known findings in behavioral economics and sociology
suggesting that homogeneously-mixed networks better produce shared behaviors than spatially-embedded networks. We not
only replicated previous findings using materials with low cognitive complexity in our face-naming condition4, but extended
them to interactions with high cognitive complexity in the matching hashtag condition. However, even when a spatially-
embedded group does not adopt a shared behavior, participants could be aligning responses with their neighbors. Forming
disjoint clusters akin to echo chambers with separable social groups aligning on different behaviors (e.g., labeling a narrative
with opposing causal content).

As shown in Figure SM 3, there is a steady increase in coordination rate (defined in the main text) in each of the conditions,
suggesting that subjects learn to match responses in both conditions. To test how the cognitive complexity of interaction
affects the onset of local coordination, we fit a Bernoulli GLM to predict the probability a pair of nodes (i.e., partnered
participates in a trial) coordinate responses by interacting trial number with network structure and interaction content, while
controlling for group size. As shown in Figure SM 3, at the beginning of an experiment, participants in the reference group
(homogeneously-mixed face-naming networks of size 20) coordinate on approximately 5% of trials (βIntercept =−2.83, 95%
CI [−2.98,−2.70]), with a coordination rate increasing by approximately 0.5% for each subsequent interaction (βTrial = 0.10,
95% CI [0.09,0.10]). Although participants in spatially-embedded networks coordinated more effectively than those in
homogeneously-mixed networks (βSpatial = 1.46, 95% CI [1.29,1.63]), the adoption of shared behaviors in homogeneously-
mixed networks is accompanied by faster learning to coordinate (βTrial:Spatial =−0.05, 95% CI [−0.05,−0.04]). The cognitive
complexity of the interactions affected coordination rates, as groups learned to coordinate face names more quickly than
hashtags (βTrial:Hashtag = −0.04, 95% CI [−0.05,−0.04]). The cognitive complexity of the interactions also mediated the
impact of network structure on coordination dynamics (βTrial:Hashtag:Spatial = 0.04, 95% CI [0.03,0.05]).

Statistical models for decision strategy dynamics
To predict the number of participants following one of the four decision strategies in a given network structure and content
interaction condition, we fit a Bayesian GLM with a categorical response distribution. The analysis revealed that participants in
hashtag-matching networks were more likely to explore new responses than follow decision strategies that exploit social context.
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Figure SM 3. Proportion of nodes in a group coordinating on each trial.

These models are fit to the proportion of participants sampling each of the four strategies, displayed in Figure 3. Participants
in hashtag matching networks were less likely to repeat themselves (RS) (βRS:Hashtag =−1.38, 95% CI [−1.49,−1.26]) and
partners (RP) (βRP:Hashtag =−0.98, 95% CI [−1.10,−0.85]), as well as sample a response remembered from earlier context
(EC) (βEC:Hashtag =−0.40, 95% CI [−0.55,−0.26]).

Impact of cognitive complexity on response coordination
Prominent game theory models used to study the emergence of coordinated behavior in networks typically account for the role
utility representation plays in taking certain actions over others, but do not consider the impact of representational content
connected to those utilities. Effective communication requires semantic and causal/categorical alignment across group members
to facilitate social learning (e.g., converging on a shared language-response, social norm). As shown in Figure SM 4, the top
hashtags for coordination are a mix of semantic topics and cause-effect relational entities encoded by the narratives situation
model. Semantic and causal content constrain the response space and guide what constitutes an optimal response. Moreover,
studies of naturally occurring hashtag behavior revealed that successful hashtags fall into one of two categories: focal hashtags,
which tag posts with broad semantic topics to relate them to larger discussions and movements across an online network
(e.g., MeToo, BlackLivesMatter, SeoulCrowdCrush), and individualistic hashtags, which make the distribution of hashtags
heavy-tailed, as they co-occur with focal hashtags while allowing users to signal personal narratives (e.g., MeTooSurvivor,
BLMProtest, PrayForSeoul)17. In our experiment, the top three most successful hashtags align on the same discrete narrative
entity, but have different string representations. Not only does causal complexity of the hashtag content make it more difficult to
coordinate responses and raises the cognitive complexity of interaction, but also the role that additional appending of semantic
content to signal a personal view (representation of narratives) has on hashtag coordination.
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Figure SM 4. Probability distribution of player coordination Left: Probability of a participant coordinating given a sampled
face. The analysis focuses on trials that contained one of the top 25 faces.Right: Probability of a participant coordinating given
a sampled hashtag. The analysis focuses on trials that contained one of the top 25 hashtags.

Modeling causal language identified in personal narratives

The causal language analysis pipeline identifies causal tuples in each topic. A document is labeled as having a causal relation if
there is a span of tokens belonging to a cause and a span of tokens belonging to an effect within the document. The algorithm
then finds causal topics by clustering the cause-and-effect spans based on their semantic topics (see Supplemental Table SM 1).
Therefore, extracted topics tend to belong more to cause events or more to effect events. We show the distribution of causes and
effects for each of the clusters in Figure SM 5. In our main analysis on causal language change, we examine how these topic
distributions change in personal narratives composed from pre- to post-interaction in our experimental networked environment.

Causal language change in personal narratives following network interaction

As shown in Figure SM 6, and discussed in the main part of the manuscript, the distributions of the shifts in the amount of
causal language for each participant (the number of causal claims generated after interaction subtracted by the number of causal
claims generated before interaction) are zero-inflated. The red line on each of the plots indicates the mean of each distribution.
The negative shift values in the spatial hashtag condition explain why the t-statistic is lower than the others in Figure 4. Despite
these negative values (which suggest that more participants provided less causal claims after interaction than before interaction),
does not overtake the central shift towards the initial causal chain in the narrative after the networked interaction, which is
shown in the causal relation level diagram in the main text of the manuscript.

We modeled the distribution of shifts shown in 4 in causal claims following networked interaction by fitting fit a hurdle
Gaussian model to predict the shift in the number of causal claims that a participant produced after network interaction
(difference = number of causal claims produced after interaction - number of causal claims produced before interaction). The
hurdle Gaussian model consists of a logistic classification step to identify personal narratives without causal claims, and then a
Gaussian distribution estimating the difference scores for the remaining documents41. We examined how network structure and
content in networked interaction impact the difference scores.

The hurdle Gaussian model reveals that around 49% of the participants did not show a change in the number of causal
claims in personal narratives after networked interaction (hu = .49, 95% CI [0.46, 0.52]). The intercept of the Gaussian linear
model component equals the mean change in the number of causal claims for participants placed in homogeneously-mixed
face-naming networks, which is not credibly different from zero (β0 = .21, 95% CI [-0.10, 0.54]). In line with our prediction
that interaction content will have a main effect on the generation of causal content in personal narratives, we found a significant
effect of hashtag interaction on change in causal language (βHashtag = .45, 95% CI [0.00, 0.88]).
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Figure SM 5. Distribution of documents instantiating each causal topic as a cause and effect in causal relations
identified by the causal language model. Causal topic labels are the result of an unsupervised clustering algorithm as descried
in Priniski et al., (2024). Causal topic labels are listed on the y-axis, and the number of documents mentioning that topic as a
cause (left-shooting blue bars) and effect (right-shooting purple bars). The unsupervised clustering algorithm returns multiple
topics that we reduced to map onto the causal model of the Fukushima narrative (e.g., mapping Tohoku Earthquake and
Earthquake onto the same label). See Table SM 1 for more details about causal topic remapping, cluster alignment with the
narrative materials, and keywords for each topic.

Significantly shifted causal relations following network interaction
As discussed in the main text, we performed a t-test to identify significantly shifted causal relationships expressed in personal
narratives following network interactions. Table SM 2 shows the full list of significantly shifted edges. Figure 4 shows positive
shifts for clarity, but these positive shifts can result from a shift away from other relationships or from self-referential clusters,
both of which are not shown in the main manuscript. The complete list of significant values for each of the 20 × 20 topics can
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Remapped Narrative Entity Unsupervised ID Keywords
Earthquake Yes (Tohoku) Earthquake 15 tohoku earthquake, the 2011 tohoku earthquake

Earthquake 1 massive earthquake, the earthquake
Tsunami Yes Tsunami 6 tsunami, a tsunami, the tsunami

Tsunami (misspelt) 18 a large tsunami, a tsunami
Waves 11 a tidal wave, 130 foot waves, 130 foot tsunami

Nuclear Disaster Yes Nuclear Disaster 0 nuclear disaster, fukushima nuclear disaster
Damage 7 the damage, intense damage, widespread damage

Electricity Outage Yes Change (Loss) 9 reducing, loss, outage
Radiation Leaks Yes Radiation 3 radiation, radioactive isotopes, particles

Setsuden Yes Energy Movement 2 Setsuden, energy crisis, conserving electricity
Poisoning Yes Health Issues 10 health concerns, health problems, many illnesses

Cancer 19 thyroid cancer, cancer, thyroid issues
Displacement Yes Displacement 14 displaced, the displacement, displaced people

Disaster No Disaster 4 a disaster, the disaster, many disasters
Effects No Effects 5 harm, environmental damage, devastating effects
Issues No Issues 8 problems, issues, fails, many problems

Terrible Event No Terrible Event 12 the event, terrible events, cataclysmic events
Destruction No Destruction 13 destruction, destroyed, the devastation

Incident No Incident 16 an accident, devastating accident, an incident
Natural Disaster No Natural Disaster 17 a natural disaster, this natural disaster

Table SM 1. Causal topics identified by the causal language model. The causal topic model identified 20 topics plus a
catch-all "no cluster" topic (not shown). Each of the topics aligned with at least one of the narrative entities described in the
Fukushima disaster materials, along with additional semantic topics. In some cases, the model identified separate clusters that
aligned with the same narrative entity described in the materials (unsupervised topics), which we mapped to the underlying
narrative (remapped). Statistical analyses were performed on the remapped topics. The keywords represent the most common
entities in each of the unsupervised topics.
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Figure SM 6. Distribution of changes in the amount of causal language produced in each experimental condition. The
text in the top right of each panel describes the number of documents exhibiting a negative shift (more causal claims before
network interaction compared to after), zero shift (the same amount of identified causal relations before and after), and positive
shift (more causal relations after network interaction than before). For each condition, the shift is zero-inflated, indicating that
many participants did not exhibit a shift in causal language.
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be found at this project’s repository on the Open Science Framework.

Structure Content Cause Topic Effect Topic Estimate p Conf Int

Homogeneous Face Health Issues Health Issues 0.0584 0.0109 (0.0137, 0.1031)
Homogeneous Face No Cluster Energy Shortage -0.0292 0.0451 (-0.0577, -0.0006)
Homogeneous Hashtag Earthquake Radiation 0.0299 0.0249 (0.0038, 0.0561)
Homogeneous Hashtag Earthquake Tsunami 0.0898 0.0050 (0.0275, 0.1522)
Homogeneous Hashtag Natural Disaster Nuclear Disaster 0.0240 0.0452 (0.0005, 0.0474)
Homogeneous Hashtag Nuclear Disaster Nuclear Disaster -0.0599 0.0180 (-0.1093, -0.0104)
Homogeneous Hashtag Tsunami Destruction 0.0240 0.0452 (0.0005, 0.0474)
Homogeneous Hashtag Tsunami Nuclear Disaster 0.0958 0.0015 (0.0372, 0.1545)
Homogeneous Hashtag Tsunami Radiation 0.0240 0.0452 (0.0005, 0.0474)

Spatial Face Earthquake Tsunami 0.0863 0.0068 (0.0242, 0.1485)
Spatial Face Energy Shortage Energy Shortage -0.0432 0.0334 (-0.0829, -0.0034)
Spatial Hashtag Earthquake Tsunami 0.0674 0.0139 (0.0139, 0.1210)
Spatial Hashtag Energy Shortage Energy Shortage -0.0393 0.0192 (-0.0722, -0.0065)
Spatial Hashtag Tsunami Nuclear Disaster 0.0730 0.0089 (0.0185, 0.1276)

Table SM 2. Results of t-tests for significantly shifted causal relations in each of the experimental conditions. The estimate
and confidence interval columns indicates the estimated mean shift for that specific causal relation following network
interaction, and p values are for tests that the mean shift is zero.

Additional information for the computational network modeling of group behavior
Agent response strategy updating and interaction patterns
As shown in Figure (SM), our model is composed of a network of Context Aware Agents (CAA), where context priors are fit to
experimental data (i.e., responses across all experimental first trials), and where an individual agent’s probabilities of sampling
a specific strategy on a given trial is calculated as follows:

P(BN) =
α

α +T +C
, P(EC) = (1−P(BN)) · pec +3

pec + prs + prp +20
,

P(RP) = (1−P(BN)−P(EC)) · γ ·
prp +1

prp + prs +2
, P(RS) = 1−P(BN)−P(EC)−P(RP),

where T is the current time-step, α ∈ (0,∞) is the so-called “learning parameter" which dictates the speed of the network to
move away from using the “brand new" strategy, C is the number of points scored per individual weighted by the time those
points were scored, pec, prs, and prp are the time-weighted points using earlier context, repeat self, and repeat partner decision
strategies, respectively, and γ ∈ [0,1] is the self-valuation parameter, conferring a possible proclivity to favor repeating yourself
over repeating your partner. A diagram illustrating the structure of this decision pipeline is shown in SM 7.
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Figure SM 7. Illustration of Decision Making Model. This diagram illustrates the decision-making flow for P1 at time t=5
given the input information. Agent decisions are independent. While probabilities are necessarily dependent on the responses
of other agents in the network, they are not at all dependent on the decision strategies of the other individuals. This is a
necessary component of the model to facilitate appropriate parameter optimization.
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Pseudocode for computational models
The pseudocode for the two computational decision-making models tested in this paper is shown below. The code for both
models is on the project’s repository on the Open Science Framework (see Preregistration section in the main text).

Algorithm 1 Centola Decision-Making Algorithm

1: for each round t in number of rounds do
2: for each pair (agent1,agent2) in pairings do
3: Randomly assign speaker and hearer roles to agent1 and agent2
4: if speaker’s current response is in hearer’s vocabulary then
5: speaker’s vocabulary← {speaker’s response}
6: hearer’s vocabulary← {speaker’s response}
7: else
8: Add speaker’s response to hearer’s vocabulary
9: agent1’s new response← random selection from agent1’s vocabulary

10: agent2’s new response← random selection from agent2’s vocabulary

Algorithm 2 CAA Decision-Making Algorithm

1: for each round t in number of rounds do
2: for each pair (agent1,agent2) in pairings do
3: if agent1’s response = agent2’s response then
4: Update each agent’s scores (and relevant decision-type scores)
5: for each agent do
6: decision type is BN with probability α

α+t+time-weighted context points ▷ time-weighted context points = ∑t
context sampling resulted in point

7: if decision type is BN then
8: agent’s new response← random sample from experiment prior
9: else

10: decision type is EC with probability EC points + 3
time-weighted context points + 20

11: if decision type is EC then
12: agent’s new response← random sample from agent’s context
13: else
14: decision type is RS with probability RS points + 1

RS points + RP points + 2
15: if decision type is RS then
16: agent’s new choice← agent’s current choice
17: else ▷ decision type is RP
18: agent’s new choice← partner’s current choice
19: if agent1’s response = agent2’s response then
20: for each agent do
21: Add 50× t instances of partner’s response to their context

▷ agents favor responses that have scored them points
22:
23: for each agent do
24: Add t instances of partner’s response to their context
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Optimizing model hyper-parameters with human data
Participants adopted different response strategies in different interaction content conditions which impacted the onset of
group-level consensus (i.e., participants were more likely to leverage previously encountered and generated responses in the face
naming condition than in the hashtag matching condition). Our computational models included an α parameter that constrained
how often an agent samples new responses versus re-samples previous responses over the course of network interactions. As
shown in Figure SM 8, we plot the average distance between simulated and experimental entropy vectors for each of the
four experiment types while controlling for network size. We see that the best-fitting exploration parameter for face-naming
networks (α = 0.40), is much lower than the best-fitting exploration parameter for hashtag-matching networks (α = 4.90).
Furthermore, for these alpha parameters, there is no dramatic difference across network structures (up versus down pointing
arrows). These results suggest that interaction content is the salient factor driving exploration strategies in human groups,
and lends support to the cognitive complexity hypothesis that individuals are slower to exploit environmental regularities in
complex interaction tasks which limits the onset of group-level consensus.

Figure SM 8. Normalized average distance in the group level response entropy between the CAA model and experimental
runs conditioned on a specified value of α , which constrains how much agents re-sample previously encountered and generated
responses on a present trial. Model fits for face-naming groups is illustrated in gray, while model fits for hashtag-matching
groups is in pink.
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